Interesting eigenvectors of the Fourier transform
نویسنده
چکیده
It is well known that a function can be decomposed uniquely into the sum of an odd and an even function. This notion can be extended to the unique decomposition into the sum of four functions – two of which are even and two odd. These four functions are eigenvectors of the Fourier Transform with four different eigenvalues. That is, the Fourier transform of each of the four components is simply that component multiplied by the corresponding eigenvalue. Some eigenvectors of the discrete Fourier transform of particular interest find application in coding, communication and imaging. Some of the underlying mathematics goes back to the times of Carl Friedrich Gauss.
منابع مشابه
Explicit Hermite-type Eigenvectors of the Discrete Fourier Transform
The search for a canonical set of eigenvectors of the discrete Fourier transform has been ongoing for more than three decades. The goal is to find an orthogonal basis of eigenvectors which would approximate Hermite functions – the eigenfunctions of the continuous Fourier transform. This eigenbasis should also have some degree of analytical tractability and should allow for efficient numerical c...
متن کاملSparse Eigenvectors of the Discrete Fourier Transform
We construct a basis of sparse eigenvectors for the N-dimensional discrete Fourier transform. The sparsity differs from the optimal by at most a factor of four. When N is a perfect square, the basis is orthogonal.
متن کاملua nt - p h / 98 07 07 0 v 1 2 4 Ju l 1 99 8 A quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors
We describe a new polynomial time quantum algorithm that uses the quantum fast fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases (commonly found in ab initio physics and chemistry problems) for which all known classical algorithms require exponential time. Applications of the algorithm to specific problems are considered, and we f...
متن کاملAn Efficient Hamiltonian for Discrete Fractional Fourier Transform
Fractional Fourier Transform, which is a generalization of the classical Fourier Transform, is a powerful tool for the analysis of transient signals. The discrete Fractional Fourier Transform Hamiltonians have been proposed in the past with varying degrees of correlation between their eigenvectors and Hermite Gaussian functions. In this paper, we propose a new Hamiltonian for the discrete Fract...
متن کاملEigenvectors and Functions of the Discrete Fourier Transform
A method is presented for computing an orthonormal set of eigenvectors for the discrete Fourier transform (DFT). The technique is based on a detailed analysis of the eigenstructure of a special matrix which commutes with the DFT. It is also shown how fractional powers of the DFT can be efficiently computed, and possible applications to multiplexing and transform coding are suggested. T
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010